KPP Front Speeds in Random Shears and the Parabolic Anderson Problem
نویسنده
چکیده
We study the asymptotics of front speeds of the reaction-diffusion equations with Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity and zero mean stationary ergodic Gaussian shear advection on the entire plane. By exploiting connections of KPP front speeds with the almost sure Lyapunov exponents of the parabolic Anderson problem, and with the homogenized Hamiltonians of Hamilton-Jacobi equations, we show that front speeds enhancement is quadratic in the small root mean square (rms) amplitudes of white in time zero mean Gaussian shears, and it grows at the order of the large rms amplitudes. However, front speeds diverge logarithmically if the shears are time independent zero mean stationary ergodic Gaussian fields.
منابع مشابه
A variational principle based study of KPP minimal front speeds in random shears
The variational principle for Kolmogorov–Petrovsky–Piskunov (KPP) minimal front speeds provides an efficient tool for statistical speed analysis, as well as a fast and accurate method for speed computation. A variational principle based analysis is carried out on the ensemble of KPP speeds through spatially stationary random shear flows inside infinite channel domains. In the regime of small ro...
متن کاملExistence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds
We prove the existence of Kolmogorov-Petrovsky-Piskunov (KPP) type traveling fronts in space-time periodic and mean zero incompressible advection, and establish a variational (minimization) formula for the minimal speeds. We approach the existence by considering limit of a sequence of front solutions to a regularized traveling front equation where the nonlinearity is combustion type with igniti...
متن کاملExponential Stability of the Traveling Fronts for a Pseudo-parabolic Fisher-kpp Equation
In this talk, I will introduce the stability of traveling front solutions for a pseudoparabolic Fisher-KPP equation. By applying geometric singular perturbation method, special Evans function estimates, detailed spectral analysis and C0 semigroup theories, all the traveling front solutions with non-critical speeds are proved to be locally exponentially stable in some appropriate exponentially w...
متن کاملExistence of Kpp Type Fronts in Space-time Periodic Shear Flows and a Study of Minimal Speeds Based on Variational Principle
We prove the existence of reaction-diffusion traveling fronts in mean zero space-time periodic shear flows for nonnegative reactions including the classical KPP (Kolmogorov-Petrovsky-Piskunov) nonlinearity. For the KPP nonlinearity, the minimal front speed is characterized by a variational principle involving the principal eigenvalue of a space-time periodic parabolic operator. Analysis of the ...
متن کاملFinite Element Computations of KPP Front Speeds in Random Shear Flows in Cylinders
We study the Kolmogorov-Petrovsky-Piskunov (KPP) minimal front speeds in spatially random shear flows in cylinders of various cross sections based on variational principle and an associated elliptic eigenvalue problem. We compare a standard finite element method and a two-scale finite element method in random front speed computations. The two-scale method iterates solutions between coarse and f...
متن کامل